ANSI/ASHRAE/ICC/USGBC/IES Addendum i to ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1-2017

Standard for the Design of High-Performance Green Buildings

Except Low-Rise Residential Buildings

The Complete Technical Content of the International Green Construction Code $^{ extsf{B}}$

Approved by the ASHRAE Standards Committee on June 22, 2019; by the ASHRAE Technology Council on June 26, 2019; by the International Code Council on May 31, 2019; by the USGBC Board of Directors on July 9, 2019; by the IES Board of Directors on June 10, 2019; and by the American National Standards Institute on July 24, 2019.

These addenda were approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE[®] website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305, telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in the United States and Canada), or e-mail: orders@ashrae.org. For reprint permission, go to www.ashrae.org/permissions.

© 2019 ASHRAE ISSN 1041-2336

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

ASHRAE Standing Standard Project Committee 189.1 Cognizant TC: 2.8 Building Environmental Impacts and Sustainability SPLS Liaison: Walter T. Grondzik ASHRAE Staff Liaison: Connor Barbaree ICC Liaison: Mike Pfieffer IES Liaison: Mark Lien USGBC Liaison: Wes Sullens

Andrew Persily*, Chair Jennifer Dolin*, Co-Vice Chair Charles Eley*, Co-Vice Chair Larry Schoen*, Co-Vice Chair Jessica Gracie-Griffin*, Co-Vice Chair Senthil Arunachlam Constantinos Balaras* **Charles Bertuch** Daryn Cline Jeffrey Boldt* Ernie Conrad* John Cross* Michael Cudahy* Jim Edelson* Anthony Floyd* Sam Francis* Mark Frankel

Francis Gallo

Susan Gitlin* Gregg Gress* Maureen Guttman Roger Hedrick* Thomas Hogarth* Donald Horn* Ksenija Janjic Gregory Johnson Michael Jouaneh* Andrew Klein John Koeller Thomas Lawrence* Neil Leslie* George O. Lea Lori-Ann Lolukoshko Stephany Mason* Molly McGuire* Jonathan McHugh*

Darren Molnar-Port Gwelen Paliaga* Xiufeng Pang Thomas Pape* Joseph Riddle Steve Rosenstock* Michael Schmeida **Charles Seyffer** Matt Sigler Kent Sovocool* Dennis Stanke* Martha VanGeem* Scott West* Daniel Whittet* Jason Wilen* Joe Winters* Jianshun Zhang

* Denotes voting member at time of publication

ASHRAE STANDARDS COMMITTEE 2019–2020 Susanna S. Hanson

Wayne H. Stoppelmoor, Jr., *Chair* Drury B. Crawley, *Vice-Chair* Els Baert Charles S. Barnaby Niels Bidstrup Robert B. Burkhead Thomas E. Cappellin Douglas D. Fick Michael W. Gallagher Walter T. Grondzik

Rick M. Heiden Jonathan Humble Srinivas Katipamula Essam E. Khalil Kwang Woo Kim Larry Kouma Cesar L. Lim Karl L. Peterman Erick A. Phelps Lawrence J. Schoen Steven C. Sill Richard T. Swierczyna Christian R. Taber Russell C. Tharp Adrienne G. Thomle Michael W. Woodford Craig P. Wray Jaap Hogeling, *BOD ExO* Malcolm D. Knight, *CO*

Steven C. Ferguson, Senior Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. *Consensus* is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees. The Senior Manager of Standards of ASHRAE should be contacted for

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Addendum i updates the cooling tower requirements by specifying different maximum concentrations of contaminants for different cooling tower materials and simplifying the calculations for meeting the requirements.

This addendum also replaces the prescriptive cooling tower requirements in Section 6.4.2.1 with a set of revised mandatory requirements in Section 6.3. A previous addendum (designated as s), moved these requirements from Section 6.4 to Section 6.3 but did not revise them. The intent is to replace the current cooling tower requirements with those shown in addendum.

Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum i to Standard 189.1-2017

Modify Section 3 as shown.

3.2 Definitions

Langelier Saturation Index (LSI): a measure of a solution's ability to dissolve or deposit calcium carbonate that is often used as an indicator of the corrosivity of water, calculated using the following formula:

$$LSI = pH - pH_s$$

where

pН	Ξ	measured	water pH	
-	_			

<u> $pH_s \equiv pH$ at saturation in calcium carbonate</u>

[...]

3.3 Abbreviations and Acronyms

LSI = Langelier Saturation Index

Modify Section 6.3.2.3 as shown.

6.3.2.3 HVAC Systems and Equipment

- a. Once-through cooling with potable water is prohibited.
- b. The water being discharged from cooling towers for air conditioning systems such as chilled water systems shall be limited in accordance with method (1) or (2):
 - For makeup waters having less than 200 ppm (200 mg/ L) of total hardness expressed as calcium carbonate, by achieving a minimum of 5 cycles of concentration.
 - 2. For makeup waters with more than 200 ppm (200 mg/ L) of total hardness expressed as calcium carbonate,

by achieving a minimum of 3.5 cycles of concentration.

- Exception to 6.3.2.3(b): Where the total dissolved solids concentration of the discharge water exceeds 1500 mg (1500 ppm/L) or the silica exceeds 150 ppm (150 mg/L) measured as silicon dioxide before the above *cycles of concentration* are reached.
- b. The design of open-circuit cooling towers for air-conditioning systems, including the materials used to construct them and their water treatment systems, shall not allow water exchange (blowdown) until one or more of the parameters in Table 6.3.2.3 reaches 90% or more of the maximum value specified in Table 6.3.2.3. The system shall be tolerant of pH levels between 7.0 and 9.2.
- c. The materials of construction for the water cooling system that comes in contact with cooling tower water shall be of the type that can operate and be maintained within the limits set in Table 6.3.2.3.
- e.<u>d.</u> Open-circuit <u>C</u>cooling towers, <u>closed-circuit cooling</u> <u>towers</u>, and evaporative <u>condensers</u> <u>coolers</u> shall be equipped with makeup <u>and blowdown water</u> meters, conductivity controllers, and overflow alarms in accordance with the thresholds listed in Table 6.3.4.1B. Cooling towers shall be equipped with <u>efficient</u> drift eliminators that <u>achieve reduce</u> drift to <u>a maximum of</u> 0.002% <u>or less</u> of the recirculated water-<u>volume flow</u> for counterflow towers and 0.005% <u>or less</u> of the recirculated water flow for cross-flow towers.
- d.e. *Building projects* located in regions where the ambient mean coincident wet-bulb temperature at 1% design cooling conditions is greater than or equal to 72°F (22°C) shall have a system for collecting condensate from air-conditioning units with a capacity greater than 65,000 Btu/h (19 kW), and the condensate shall be recovered for reuse.

Table 6.3.2.3 Recirculating Water Properties for Open-Circuit Cooling-Tower Construction

Recirculating Water Parameters	<u>Maximum</u> <u>Value</u>
Conductivity (micro-ohms)	3300
Total dissolved solids (ppm)	2050
Total alkalinity as CaCO ₃ (ppm) excluding galvanized steel	<u>600</u>
Total alkalinity as CaCO ₃ (ppm) galvanized steel (passivated)	<u>500</u>
Calcium hardness as CaCO ₃ (ppm)	<u>600</u>
Chlorides as Cl (ppm)	<u>300</u>
Sulfates (ppm)	<u>250</u>
Silica (ppm)	<u>150</u>
Langelier Saturation Index (LSI)	+2.8

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.